Approximate Low Rank Solution of Generalized Lyapunov Matrix Equations via Proper Orthogonal Decomposition
نویسندگان
چکیده
We generalized a direct method for generalized Lyapunov matrix equation, using proper orthogonal decomposition (POD). Such equations arise in model reduction of descriptor systems.
منابع مشابه
Least-Squares Approximate Solution of Overdetermined Sylvester Equations
We address the problem of computing a low-rank estimate Y of the solution X of the Lyapunov equation AX + XA′ + Q = 0 without computing the matrix X itself. This problem has applications in both the reduced-order modeling and the control of large dimensional systems as well as in a hybrid algorithm for the rapid numerical solution of the Lyapunov equation via the alternating direction implicit ...
متن کاملLow - Rank Solution Methods for Large - Scale Linear Matrix Equations
LOW-RANK SOLUTION METHODS FOR LARGE-SCALE LINEAR MATRIX EQUATIONS Stephen D. Shank DOCTOR OF PHILOSOPHY Temple University, May, 2014 Professor Daniel B. Szyld, Chair We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on standard, extended and rational Krylov subspaces to solve equations w...
متن کاملEfficient low-rank solution of generalized Lyapunov equations
An iterative method for the low-rank approximate solution of a class of generalized Lyapunov equations is studied. At each iteration, a standard Lyapunov is solved using Galerkin projection with an extended Krylov subspace method. This Lyapunov equation is solved inexactly, thus producing a nonstationary iteration. Several theoretical and computational issues are discussed so as to make the ite...
متن کاملLow-rank Iterative Methods for Projected Generalized Lyapunov Equations
LOW-RANK ITERATIVE METHODS FOR PROJECTED GENERALIZED LYAPUNOV EQUATIONS TATJANA STYKEL Abstract. We generalize an alternating direction implicit method and the Smith method for large-scale projected generalized Lyapunov equations. Such equations arise in model reduction of descriptor systems. Low-rank versions of these methods are also presented, which can be used to compute low-rank approximat...
متن کاملA generalized MBO diffusion generated motion for orthogonal matrix-valued fields
We consider the problem of finding stationary points of the Dirichlet energy for orthogonal matrix-valued fields. Following the Ginzburg-Landau approach, this energy is relaxed by penalizing the matrix-valued field when it does not take orthogonal matrix values. A generalization of the MBO diffusion generated motion is introduced that effectively finds local minimizers of this energy by iterati...
متن کامل